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Abstract:. Phatolysis of  ketone 6b generates allyfic radical 9. The decisive step in this transformation is a heterolytic 
C,O-bond cleavage from radical 7b that generates radical cation 8 from raddtxd 7b. This ESR study models the 
anaerobic strand scission of4'-DNA rad/ca/s. © 1997 Elsevier Science Ltd. 

The radical induced DNA strand seission by antitumor antibiotics of  the bleomycin or enediyne families 

is achieved by H-atom abstraction from the deoxyribose moiety. I Among the deoxyribose radicals the 4'-DNA 

radical I plays an important role since it can cleave the DNA strand even in the absence of O 2 and under neutral 

conditions. 2 This spontaneous DNA strand scission is believed to occur via radical cation 2 that reacts with I-1~O 

and generates radical 3. 
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In spite of  the importance of this reaction mechanism there is no ESR spectroscopic evidence for 4 ' -DNA 

radical intermediates. Even our attempts to observe ESR spectra using 4'-substituted deoxyribonucleosides 4 

and 5 as radical precursors failed. 3 However, we have now found that a replacement of the heterocycle b in 4 

a statable precursor for these ESR experiments. and 5 by a phenyl group (compound 6) yields " . 4 
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Figure 2 shows that by photolysis of 6a an ESR speetrum of the modified deoxyribosyl radical 7a can 

be obtained. 5 For the assignment of  the coupling constants the geometry of  radical 7 (R=TMS) was optimized 
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with the UI-IF/3-21G* ab initio method, and the Fermi contacts were calculated with the density functionals 

BLYP/6-31G* at the unrestricted level of theory. 6 
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Coupling Constants (all) of 7a in Gauss: 

1-I-I 2a,b-H 3-H 5a-H 5b-H 

obs. 8.2 0.95 3.6 10.4 11.6 
calc. 7.1 0.95 4.7 
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Fig.l: Calculated conformation of radical 7 (R = TMS). 

The small ~coupling constant of 3.6 G (4.7 G calc.) demonstrates the equatorial orientation of the C,H- 

bond at 3-C. Thus, the C,O-bond at 3-C is in axial position. 7 The large y-coupling constant of 8.2 G (7.2 G 

calcd.) for 1-I-I can be explained by the axial orientation of the C,H-bond that facilitates the interaction with the 

spin of the cyclic oxyalkyl radical. Therefore, the phenyl group at 1-C adopts the equatorial position. The 

quantum chemical calculations also suggest a pyramidalization at the radical carbon center of 7 (Figure 1).6 

Fig.2: ESR spectrum of 7a (lcft) measured in benzene at 7°C and the simulation (right) of this spectrum. 

A spontaneous, hete~olytic cleavagc of the C,O-bond at 3-C can occur only with good anionic leaving 

groups like phosphates, s In order to get more informalions about this reaction step, we photolyzed the 

phosphorylated dewivative 6b in the ESR cavity and observed the formation of the aUylic radical 9 (Figure 3). 5 
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Coupling Constants (all) of 9 in Gauss: 

1-H 2-H 3--H 5a,b-H 

obs. 32.8 13.3 2.0 8.6 
calc. 29.8 14.2 1.8 7.4 

The structure of 9 can be unequivocally confirmed by the ESR coupling constants. The small coupling 

constant of 2.0 G (1.8 G talc.) is typical for a hydrogen at the central carbon of an allylic radical. 9 The large 

coupling constant of 32.8 G demonstrates that the C,H-bond at 1--C is in the plane of the aUylic n-system so that 

the phenyl group adopts an equatorial position. 
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Fig. 3: ESR spectrum of 9 (left) measured in benzene at 7°C and the simulation (right) of this spectrum. 

The observation of the allylic radical 9 supports the assumption that radical cation 8 is formed by 

heterolytic C,O-bond cleavage from radical 7b since is well known that radical cations are acids that deprotonate 

easily and yield aUylic radicals. 1° These ESR spectroscopic measurements were carried out in benzene. Using 

methanol as solvent the radical cation 8 was trapped by the nucleophilic alcohol. 4 

Conclusion: The ESR spectroscopic measurements using ketone 6 as a precursor for a model of 4'- 

deoxyribonucleoside radicals provide further evidence for a heterolytic strand cleavage of 4'-DNA radicals 

(1---)2) under anaerobic conditions. 
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